If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k+2(k^2+2k+1)=0
We multiply parentheses
2k^2+k+4k+2=0
We add all the numbers together, and all the variables
2k^2+5k+2=0
a = 2; b = 5; c = +2;
Δ = b2-4ac
Δ = 52-4·2·2
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-3}{2*2}=\frac{-8}{4} =-2 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+3}{2*2}=\frac{-2}{4} =-1/2 $
| x+2x+7=3x=7 | | -121=30k-63k | | 112+94=115+n | | 10x-160=3x+71 | | -4.9x^2-78x-150=0 | | 5x(2-4x)+8=16x | | (x-3)^3/4=8 | | P-8=7(-p-8)-4(8+2p) | | −6x−13=−x−23 | | 10y-6=9y-3 | | -141-5x=6x+134 | | 2/5x-1/2=7/4+3/10x | | x^2+8x+126=0 | | x^2-28x+53=0 | | -128-9x=112+6x | | 7w+26w=w | | 5/15=n/6 | | 3√(2x-5)-15=0 | | 5(3+4x)-6=109 | | X^3-4x^2-4x+8=0 | | 1/5x=(1/4-x)-4(1/2x-2) | | 3√2x-5-15=0 | | 19-16y=21 | | x2+x-19=0 | | 5x+15=4x+34 | | 4b^2-23b+26=0 | | 21n^2-12n-12=0 | | 13-4y-9y=130 | | 13=6-3.5k | | x^2+8x-60=0 | | 2b-1/2-5/2b=1/4 | | (0.5x+1.2)–(3.6–4.5x)=(4.8–0.3x)+(10.5x+0.6) |